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ABSTRACT RESULTES
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The dynamic urban thermal environment has an immediate g | - s w0 e 0w o

iImpact on photovoltaic conversion efficiency (PVCE) while
unstable weather significantly determines horizontal land surface
solar Irradiation. This results in an unpredictable uncertainty In
electricity generation, posing greatly challenges to the planning
of PV installed capacity and the operation of gird load balancing.
To tackle this problem, we developed a GeoAl-facilitated
geospatial model aimed at accurately estimating monthly
electricity generation considering the influence of both thermal
environment and whether variability. The model consists of four
modules: (1) retrieve photovoltaic surface temperatures (PVSTs)
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from thermal satellite imagery and collected meteorological data T Taa TR e o S o o
to quantify the varying thermal conditions, (il) assess the Fig 3. Feature selection heatmaps. Fig 4. Observed LSTs versus estimated PVSTs
S o : : : : < e (a) Pearson correlation coefficients. from the Landsat imagery.
Slgmflcance of each mﬂ.uentlal chtor n PVST estimation; (.”I) (b) Spearman’s rank correlation coefficients. (@) Observed LSTs.
develop three comparative machine learning models to build (¢ P-values for Pearson correlation). (b) Estimated PVSTs using RF.
° . ‘L ° : . (d) P-values for Spearman’s rank correlation. (c) Estimated PVSTs using SVM.
regressions between the |.dent|f|ed influential f.actors and PVSTS; ) bps scores of the emaining eight () Estimated PVSTs using XGBOost.
and (iv) calculate the spatiotemporal PVCEs. This leads to a more variables and PVST.
accurate estimation of monthly electricity generation compared @ © ®)
to the conventional method. The empirical Investigation In ] s

Singapore found that their PVCEs exhibited small variations and
monthly electricity generation ranged between 10,000 to 14,000
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MWh, benefiting from relatively consistent climate and the s » 4 f
water’s cooling effect throughout the year in Singapore. ¥ . wsons || o ||
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Module 1. Module 2. Fig 5. The estimation errors for PVST of three estimation models. (a) RF for the testing

Calculating the LSTs on floating PV surfaces' ' Building the PVST estimation models dataset. (b) SVM for the testing dataset. (c) XGBoost for the testing dataset.
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Fig 1. Research framework built by three interconnected modules.
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This study proposes a research framework for the estimation (Fig
1). First, the observed LSTs are used as the training data to
estimate the PVST. To achieve this, LSTs on floating PV surfaces Vionth

are retrieved frOm remote SenSing images. Second, the PVST 1 Monthly a.werage A.T I Estimated monthly PVST O .Dynamically estimated PVCE
estimation models are built based on the ML models to estimate Fig 7. Estimated monthly PVCE based on the estimated PYST.

PVSTs under a dynamic thermal environment, which are validated
by using a set of performance evaluation metrics to identify the
best estimation model. Third, the effects of the thermal
environment on the PVST are evaluated, and the electricity
generation Is estimated by adapting to the dynamic PVCE.

CASE STUDY AREA
Mr

Monthly average AT / Estimated

15000 173.30 180
Q

13500 153.25 N 160

) 147.50 144.66 _o.. 144.50
O O o)

O
12000 143.91 . 140
139, 89 143.33 130 95

10500 128 il 124 80 |_I
Lower Seleta 9000

Reservoir 1 2 3 4 7 8 9 10
Month

Monthly average solar
radiation (KWh/m?)

Monthly average floating PV
electricity generation (MWh)

\
\
\

\
e
1°30W

\

1°25'N

I Statically estimated electricity generation B Dynamically estimated electricity generation
O-Monthly average solar radiation (2014-2020)

-
I 1 1°20'N
/

-
-
=

Fig 8. The electricity generation estimation of four floating PV farms (static vs dynamic).
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Fig 2. The investigated four floating PV farms in Singapore. J



mailto:zhur@ihpc.a-star.edu.sg

	Slide 1: GeoAI unravels the effects of urban thermal environment on utility-scale floating photovoltaic electricity generation

